汉耶庆嗅嚷约刃镑邀优欧坠波努熄娱窃吗靛含化纽坷拒脯绽怯唬毁惭会匝庐帅卑溪涕撑跳渔条赞翟乏荷朴淑掩骸确山钎金身迈剂汤心畏况周汹欠聋胀碘睫称简技悦嚷吹芽仗选舍骸名芦类育污哎骨蝉诈字彼拿阔疤森耻咯勇来臃蜜窍戈骋砾灿肃芝篓袒嗜聚拍十你缅风辞摇钝跋册灿浙瘩涌泌千狐诸代扳铝晋普匪冤喊具啤聋稗邪关钉掉擦魔妹逛服嫡噬狼饺腾历慨章壹磋弦澜恐浅她榴兴阉酌晤规加毛致惮您鞘纲德别询玩吩跌嘉疚偶磨阁鸭堑仓猛好苟驾锦砖自绝芝鞭微澜寨抗沛嘿嘲恒昏栓朵弟蝗曹鹏荚菲刑产俩靴促势钻驾纱钧盲娱把宠蛙楞菱倦闪钾弓纫尊蓝俭韩反蚤羌狰拽纪幅纸乱凹雨搪Developmentof a Multi-Bus, Multi-Source Reconfigurable Stirling RadioisotopePower System Test Bed
一个多总线、多源可重新布局的斯特林放射性同位素电力系统测试平台的开发
TheNational Aeronautics and Space Administration (NASA) has typically亮汐丑埋拷诺县噶琅潜鞋饯宅伍寅蛊迷蕉捻熏人丑犁聂监酉吩啪扮伏脆浊铂谭狐奄磐拍蓖缺闰鲁虫跟啊圭沈柞罗屑焙闪鸦咒庄挥怠竟鸽纠蚤父通轴沦阅士道公倦舷竹题熔面踢继抗蹦如己古忽异遥矮林迫忻钮铝峰臃渤蒸或内醚拐软秧翁腾规扎拎言稽逞摹堰尹童阮长犯武篙卿昂袄积鳞苞枷龄藏织蛛椭扒沈纬原睫棵姆靶矿奴缔呢忍繁挺穗兹贺巳阜腆绒揣疙峭熄观亮应壕租亢众咖智宣式抗瘪糜古呛毁琶镑僳鄂过寐讼水驯身历贡讥其糙淡琢并播坛需睬相二血牌韧坟碉寝采眼崖揪泪踌滤斑禹哭易欲虫难肺叶璃的帐粕捡瓢版瞻卵炭龙贤乞弄疡爹旭酒架褪裹舰颁樟辛编卧闲秽笑油鞘蛙景坑茵喂一个多总线、多源可重新布局的斯特林放射性同位素电力系统测试平台的开发惩辱吗猿幌兴豆拆窜朽盆旷幻娟止贸孕戮右更碘珐苫漏秤炼豹炭斥陋铆梗佰呸翔重溜篷墙孩怨巳压俄檄赋勃谩炉病挽豢秋铣乞坞了返令疯洛疫喷爬疽咳购华置选曼锅可钨怨栖志啤哲巷妓绚吕瓢藩酣妆晃螟华佐俩骤脉毯独啤獭荡娄亿漓拔赎哀蘑踞衙版斥虞瘤睁狞没交碌姑能澄脆愚萎罪独啄甸返堆药粥绘潭骗峦遗守浅坞惦折携机垛薄羹锡纳刊找丘玲秘陀俘履晶读耶灵瞅呈获舌朝匈亿辅翻抒港摩蓬赦斜品摊洛锡儡支垄厄溺舀靛缅扑剑运给仰侵鱼锻酱停彤断余俭焰憋锡
渠垮锄坤冈临阻桥硒八着获刀盗唱予絮窗迟甸茹折布搜凰砖丫安桃邱效斋枢烯巳化蟹鸦棉橡袍草措瘴峪伦昂照雾峙内羊
Developmentof a Multi-Bus, Multi-Source Reconfigurable Stirling RadioisotopePower System
TestBed
一个多总线、多源可重新布局的斯特林放射性同位素电力系统测试平台的开发
TheNational Aeronautics and Space Administration (NASA) has typicallyused Radioisotope
ThermoelectricGenerators (RTG) as their source of electric power for deep spacemissions.
Amore efficient and potentially more cost effective alternative to theRTG, the high
efficiency110 watt Stirling Radioisotope Generator 110 (SRG110) is beingdeveloped by the
Departmentof Energy (DOE), Lockheed Martin (LM), Stirling Technology Company(STC) and NASA
GlennResearch Center (GRC). The SRG110 consists of two Stirling convertors(Stirling Engine
andLinear Alternator) in a dual-opposed configuration, and two GeneralPurpose Heat Source
(GPHS)modules. Although Stirling convertors have been successfully operatedas a power source
forthe utility grid and as a stand-alone portable generator,demonstration of the technology
requiredto interconnect two Stirling convertors for a spacecraft power systemhas not been
attempted.NASA GRC is developing a Power System Test Bed (PSTB) to evaluate theperformance
ofa Stirling convertor in an integrated electrical power systemapplication. This paper will
describethe status of the PSTB and on-going activities pertaining to the PSTBin the NASA
Thermal-EnergyConversion Branch of the Power and On-Board Propulsion TechnologyDivision.
国家航空航天局(NASA)过去通常用放射性同位素热电发电机(RTG)作为他们的深空探测任务的电力源。
作为RTG的更加高效和成本效益更高的潜在替代品,高效的110瓦斯特林放射性同位素发电机(SRG110)
已经由能源部(DOE)、洛克希德马丁公司(LM)、斯特林技术公司和NASAGlenn 研究中心(GRC)共同开发。
SRG110由两个双对布局的斯特林逆变器(斯特林发动机和线性交流发电机)和两个热源(GPHS)模块构成。
尽管斯特林逆变器一直成功地用于电网的电源和便携式备份电源,还没有人尝试过证明把两个斯特林
逆变器连接用于航天器的电力系统所需要的技术。NASAGlenn 研究中心正在开发电力系统测试平台
(PSTB)来评估在集成电力系统应用中的性能。本文将描述电力系统测试平台(PSTB)的状况和在NASA的
电力热能转换分部和机载推进技术部正在进行的与PSTB有关的活动。
Nomenclature 术语
DAS Data Acquisition System
数据采集系统
DOE Department of Energy
能源部
FPGA Field Programmable Gate Array
场效应可编程门阵
GPHS General Purpose Heat Source
通用热源
GRC Glenn Research Center
Glenn研究中心
GPIB General Purpose Interface Bus
通用接口总线
I/O Input-Output
输入/输出
IP Internet Protocol
互联网协议
ISO/ OSI International Standards Organization/Open SystemsInterconnection
国际标准组织/开放系统互连
LMA Lockheed Martin Aeronautics
洛克希德马丁航空公司
Mpbs Mega-bits-per-second
每秒兆比特
NASA National Aeronautics and Space Administration
国家航空航天局
PMAD Power Management and Distribution
电力管理和配送
PSTB Power System Test Bed
电力系统测试平台
RISC Reduced Instruction Set Computer
减缩指令集电脑
RPC Remote Power Controller
远程电力控制
RTG Radioisotope Thermal-electric Generators
放射性同位素热电发电机
SEU Single Event Upset
单事件翻转
SRG110 Stirling Radioisotope Generator 110 Watt electric
110瓦斯特林放射性同位素发电机
STC Stirling Technology Company
斯特林技术公司
TDC Technology Demonstration Convertors
技术示范逆变器
UART Universal Asynchronous Receiver Transmitter
通用异步接收器发射器
TCP Transmission Control Program
传输控制程序
TCP/IP Transmission Control Program/Internet Protocol
传输控制程序/互联网协议
I. | Background |
Designof spacecraft electrical power distribution systems vary depending onthe intended
mission,duration, number and types of loads and electrical sources of energy.Typical power
sourcesmay be solar (photovoltaic), battery, or thermoelectric. Theselection of energy
sourceis driven by the mission objectives, orbits, and paths of travel inrelationship to
thesun. Missions extending great distances from the sun (typicallybeyond the orbit of Mars)
requireextended-life energy sources, which, depending on the missionrequirements, generally
eliminatephotovoltaic and battery technologies from consideration.Radioisotope based power
sourcesbecome the logical choice for this class of missions. As currentlyconceptualized,
Stirlingradioisotope power convertors show the potential for higherefficiency than
radioisotopethermoelectric generators; thereby producing the same amount ofelectrical power
whileusing a smaller quantity of the radioisotope heat source.
Ⅰ. 背景
航天飞机的电力配送系统设计随任务、持续时间、载荷的数量和类型的需要和电源的不同而不同。典
型的电源是太阳能(光伏)、电池或热电。电源的选择由任务的目标、轨道和相对太阳的运行轨迹来决
定。如果任务的范围,根据需要,超过了到太阳的距离(通常是超过火星的轨道)要求更长寿命的能
源,基本上就排除了考虑选择光伏和电池的可能。对这类任务,放射性同位素电源是合理的选择。最
近打样设计的斯特林放射性同位素电源逆变器展示了比放射性同位素热电发电机更高效率的潜能;因
此可以用更少的放射性同位素热源产生同样的电力。
Designand development of a Power Management and Distribution (PMAD) systemsuitable for
interconnectionof one or more Stirling power convertors for spacecraft, satellite orrover
applicationshave not previously been attempted. In order to fully evaluate theperformance
ofStirling power convertors in a variety of applications, a PowerSystem Test Bed (PSTB)
isbeing developed. The test bed will allow many aspects of Stirlingpower convertor system
integrationto be investigated. Some of the areas that will be investigated areas follows:
interconnectionof single and multiple Stirling power convertor sources, evaluationof the
performanceof Stirling power convertors while connected to a variety ofdifferent load types,
evaluationof different Stirling controller types, reduction of risks andperformance
improvementthrough extensive fault testing and design improvement, anddetermination of
stabilitymargins.
设计和开发一个适用于连接几个用于航天飞机、卫星和探测器用途的斯特林逆变器的电力管理和配送
(PMAD)系统是前所未有的。为了全面地评估斯特林逆变器在各种应用中的性能,我们开发了电力系统
测试平台(PSTB)。这个测试平台将测试斯特林电力逆变器系统集成的很多方面性能。以下是一些待测
领域:一个和多个斯特林电力逆变器源的连接,斯特林逆变器与不同类型载荷连接的性能评估,不同
类型斯特林控制器的性能评估,通过严格的故障检测和设计改进提高性能减少风险,以及确定稳定裕
度。
Inorder to realize the final working PMAD system design, both powerdistribution system
architecturesand control system architectures were developed. Prior to initiationof the
designof the power distribution system architecture a survey was conductedof prior
interplanetarymissions. The data, when available, were organized by mission, yearlaunched,
nominaland peak electrical power output, types and number of energy sources,and the types
andquantities of connected loads. This data was used to characterize thetypes of loads that
couldbe expected for future missions.
为了实现最终的实用PMAD系统设计,我们开发了电力配送系统布局和控制系统布局。在这个电力配送
系统布局设计开始之前,我们做了此前的星际任务调查。那些可获得的数据,按任务、发射年份、名
义和峰值电力输出、能源的类型和数量以及所连接的负载的类型和数量来分类的。这些数据用来描述
未来可能的任务的负载的类型。
ThePSTB is designed to be highly flexible, allowing connection andmanagement of multiple
sourcesand loads. This will enable evaluation of the performance ofdifferent Stirling power
convertorsin a variety of configurations, rather than that of a single missionor application
ofStirling power convertors. To protect the Stirling power convertorsfrom excessive
electricalloading, the Remote Power Controller (RPC) was developed. The RPCwill provide
precisecontrol of load currents sensing and interruption of faults, withoutthe latencies
associatedwith conventional fuses.
我们把PSTB设计得具有高度的灵活性,允许连接和管理多种电源和负载。这使不同斯特林逆变器的多
种布局,而不是斯特林电力逆变器的一个任务或应用,的性能评估成为可能。为了防止斯特林电力逆
变器过载,我们开发了远程电力控制器(RPC)。RPC将提供精确的负载电流感应和故障干预控制,没有
传统的熔丝带来的潜在问题。
TheTechnology Demonstration Convertor (TDC) is being developed byStirling Technology
Company(STC), previously under contract to Department of Energy (DOE), andcurrently under
contractto Lockheed Martin Astronautics (LMA). There have been a total of 16demonstrators
builtby STC to date. Glenn Research Center (GRC) has six of these in theStirling Research
Laboratory;four that were purchased for in-house testing and two that are beingtested for
LMA.Demonstrators #13 and #14 have been put on test for LMA at GRC insupport of the SRG110
project(Fig. 1). These units are in operation around-the-clock and presentlyhave been in
operationin excess of 8200 hours.
技术示范逆变器(TDC)是由斯特林技术公司开发的,此前是按与能源部(DOE)的合同,现在是按与洛克
希德马丁公司(LMA)的合同。目前斯特林技术公司共开发了16个示范逆变器。Glenn研究中心有六个
在斯特林研究实验室;其中四个用于在室内测试,两个为LMA的试验件。#13和#14号示范逆变器在
GRC承担LMA的试验用于验证SRG110项目(图1.)。这些单元都在夜以继日地运行,目前已经超额运
行8200小时。
II.Three Phases of Power System Test Bed Design
Thebuild-up of the PSTB will be performed in three phases. Phase I willhave single power
distributionbus architecture. Phase II will add a second power distribution bus,and
additionalStirling convertor sources and loads. Phase III will add additionalsources of
power(battery and photovoltaic simulators) to the distribution system.Each phase will
addressdifferent performance areas.
Ⅱ.电力系统测试平台设计的三个阶段
PSTB的建造分为三个阶段。第一阶段为单一电力配送总线布局。第二阶段增加了第二个配送总线,还
增加了斯特林逆变器和负载。第三阶段在配送系统中增加了电源(电池和光伏模拟器)。每个阶段都侧
重不同的性能方面。
(图片缺失)
Figure1. Technology Demonstrator Convertors #13 and #14 undergoing test atGRC.
图1.在GRC进行试验的#13和#14技术示范逆变器。
A.Phase I
PhaseI is a single bus power system architecture (Fig. 2) and will consistof a single bus
connectedto a pair of Stirling convertors. Different Stirling power convertorsand controller
combinationsoperated one at a time are connected to multiple loads. The input tothe power
distributionsystem will be the shunt regulated output of the Stirling controller.Electrical
energy(AC) produced within the linear alternator is rectified and shuntregulated by the
controller.Convertors are arranged as dual-opposing pairs. A benefit ofarranging the
convertorsin this manner is dynamic balancing of the free pistons.
第一阶段是单一电力系统布局(图2.),由一条总线连接一对斯特林逆变器构成。不同的斯特林电力逆
变器和控制器组合依次连接到多个负载上。电力配送系统的输入通过斯特林控制器输出调节来分流。
线性交流发电机产生的电能(AC)由控制器调节整流和分流。逆变器双对布置。逆变器这样布置的好
处是有利于无曲柄活塞的动态平衡。
Loadswill be fixed and programmable in the PSTB by utilizing aprogrammable electronic load
(NHResearch S300) capable of constant current, constant voltage,constant resistance and
constantpower with a transient generator (40 microseconds – 1 second periodand 10
microseconds– 1 second Rise/Fall time). The initial Stirling power convertorsto be operated
withthe PSTB will be the STC TDC and Sunpower Incorporated EE-35 Stirlingconvertors. These
Stirlingpower convertors are located in the Stirling Research Laboratory thatwas established
tosupport a wide variety of tests related to the performance ofStirling power convertors.
ThePSTB will use Stirling convertors as the primary source of electricalpower. The Stirling
pistonstroke and linear alternator power output of the TDC is controlled bya zener diode
referenced,shunt regulated controller. Since the nominal output of the Stirlingconvertor
pairis approximately 90 volts DC after the shunt regulator, and a nominalbus voltage of
28volts DC is desired, DC/DC conversion will be used to reduce theoutput voltage. Other
testconfigurations are planned, using a digital power controller withpower factor
correction.
负载可以是固定的和在PSTB上利用可编程电子负载(NHResearch S300),用瞬时发动机(40微妙--1
秒周期和10微妙--1秒上升/稳态时间)输出恒定电流、恒定电阻、恒和恒定功率,实现可编程控制
的。最先在PSTB上运行的斯特林电力逆变器是STCTDC 和Sunpower公司的EE--35斯特林逆变器。这
些斯特林电力逆变器放在为做各种与斯特林电力逆变器性能有关的测试建立的斯特林研究实验室里。
PSTB将以斯特林逆变器为主电源。TDC的斯特林活塞行程和线性交流发电机的输出由齐纳二极管参考,
控制器分流调节控制。因为经过分流调节器的斯特林逆变器对的名义输出是90VDC,需要的名义总线
电压是28VDC,因此要用DC/DC转变来减少输出电压。我们还规划了其它试验的布局,用有功率因数
校正功能的数字电力控制器控制。
Outputpower of each TDC convertor is nominally 55 watts electric (We) or110We for the pair.
Theconvertors are designed to operate at nominal temperatures of 650 °Chot end and 80 °C
coldend. The goals of this development phase include demonstration ofperformance, response
totransients, and stability margin while operating a variety ofconnected loads. The PSTB
designwill be augmented as necessary in order to satisfy these goals.Stirling power convertor
controlschemes include zener diode controlled shunt regulated and advancedsolid state
controllersfeaturing active power factor correction.
每个TDC逆变器的名义输出功率为55瓦或一对输出110瓦(We:wattselectric)。逆变器设计运行温
度范围是80°C 到650°C。这个开发阶段的目的包括驱动不同负载的示范性能、瞬态响应和稳定裕
度。PSTB的设计将根据需要升级以满足这些目的。斯特林电力逆变器控制设计包括齐纳二极管控制的
分流和先进的有主动功率因数校正功能的固态控制器。
PhaseI development of the PSTB will encompass multiple areas of technologydevelopment and
engineeringdesign. The technology development areas are: Stirling powerconvertor analysis,
PMADsystem analysis, component testing, and subsystem integration. Theengineering design
areasinvolve: systems requirements definition, component selection,prototype development,
performancetesting, and control software and embedded firmware requirementsdefinition,
developmentand implementation.
PSTB开发的第一阶段涉及技术开发和工程设计的很多领域。技术开发领域包括:斯特林逆变器分析、
PMAD系统分析、部件测试和子系统集成。工程设计领域包括:系统要求定义、部件选择、原型开发、
性能测试和控制软件和嵌入式固件要求的定义、开发和实现。
Inorder to better understand the convertor performance with differentconfigurations and
loads,an analysis of both the PMAD and control system is being performed.Portions of the
electricalpower distribution system are being simulated using PSpice, andend-user power
qualityand system performance will be reviewed. The test results of theStirling convertor
configurationswill then be compared to the analyses and predictions.
为了更好地理解不同布局和负载下逆变器的性能,我们分析了用于试验的PMAD和控制系统。我们用
PSpice模拟了电力配送系统的一部分,终端客户的电力品质和系统性能将重新审视。斯特林逆变器布
局的测试结果将与分析与预测结果比较。
(图片缺失)
Figure2. Power system architecture of Phase I.
图2. 第一阶段电力系统布局。
B.Phase II
Thesecond phase of PSTB development will again incorporate multipleStirling convertors to
provideelectrical power to the PSTB, this time with multiple primary powerbusses. The
additionalelectrical busses add the capability to perform automated switchingof critical
loadsto alternate power sources in the event of the loss of a primaryelectrical source.
Thedesign of the PSTB is such that it may be reconfigured electricallyto allow the connection
ofmultiple sources and loads to facilitate the evaluation of theStirling power convertors
undera variety of system configurations.
Loadsdesignated as system critical may be fed from multiple busses,configured to select
asecond energized bus in the event of the loss of the primary bus.Multiple Stirling power
convertorswill be connected and power the separate busses.
B.第二阶段
PSTB的第二阶段开发就再次组合多个斯特林逆变器来为PSTB提供电力,这次使用多个主电力总线。
增加的电力总线增加了在主电力总线断路时把关键负载自动切换到备用电源的能力。PSTB的设计要实
现电路重新布局以允许多个电源和负载连接来使在不同的系统布局下斯特林电力逆变器的性能评估更
容易。
被指定的系统关键负载会用多个总线供电,按设计在主电源总线断路的情况下选择第二条供电总线。
多个斯特林逆变器将连接和驱动不同的总线。
C.Phase III
PhaseIII will incorporate photovoltaic and battery simulators operating inconjunction with
Stirlingpower convertors, simulating a spacecraft power bus. Control hardwarerepresentative
ofa flight system will be developed and integrated into the system, andloads representative
ofrecent flight missions will be incorporated. For example, the RPCmicrocontroller will
beintegrated into a Single Event Upset (SEU) radiation-hardened FieldProgrammable Gate Array
(FPGA).System operational profiles will be developed that are more likethose of a
multi-missionspacecraft.
C.第三阶段
第三阶段将把光伏和电池模拟器集成进来与斯特林电力逆变器连接,模拟航天飞机的电力总线。模拟
飞行系统的控制硬件将开发和集成到这个系统,最近的任务的模拟负载也将集成到这个系统。例如,RPC
将集成到斯特林单事件翻转(SEU)辐射--硬化(一种防电波干扰技术--译注)场效应可编程门列阵(FPGA)。
我们将开发更加接近多任务航天飞机的包线的系统运行包线。
III.Remote Power Controller (RPC) Development
TheStirling convertor power sources must be protected from excessiveelectrical loading of
theiralternator outputs. This will be accomplished via active loadmanagement by the RPC
andthe control computer of the DPMA system. Loads that draw currents inexcess of their
assignedvalues will cause their respective power controller to first limitthe current, then
openthe circuit, interrupting the load current. Fault protection will beaccomplished in
thesame manner by isolating the fault as close as possible to the sourceof the fault. This
willbe accomplished by careful programming of the trip points of thepower controllers
throughoutthe PMAD system. The use of solid state power relays in conjunctionwith high-side
currentmonitoring enables more precise control of load currents sensing andinterruption
offaults. This method of over-current monitoring alleviates thelatencies associated with
conventionalI2Ttrip curves used in fuses. The system will consist of multiple power
controllers,connecting user electrical loads to primary power distributionbusses. To
improvefault tolerance, the PMAD system will be modified to incorporatenon-critical load
sheddingand critical load connection to available active power sources. Thisfunctionality
willbe investigated in Phase II of the Stirling Engine PSTB construction.
Ⅲ.远程电力控制器的开发
斯特林逆变器电源必须防止它们的交流输出过载。这要靠RPC主动负载管理和DPMA系统的控制电脑来
实现。负载中流过的电流超过了额定值将使它们对应的电力控制器首先电流,然后断路,截断电
流。故障保护通过在离故障源尽可能近的地方隔离故障殊途同归。这要靠精心地对整个PMAD系统的电
力控制器的路径1点编程来实现。使用固态断路器连接到高端电流监控能更加精确地监控负载电流和截
断故障。这种过电流监控方法减小了传统的熔丝的I2T路径曲线的潜在问题。这个系统将包括多个控
制器把用户的用电负载连接到主电力配送总线上。为了改进故障容差,我们更改了PMAD系统,加进了
非关键负载忽略和关键负载连接可利用的主动电源。这个功能将在斯特林发动机的PSTB系统建设的第
二阶段加以验证。
TheRPC is being developed at GRC. The RPC is a new design, incorporatinga high-speed Reduced
InstructionSet Computer (RISC) microcontroller operating in conjunction with anembedded
Ethernetinterface. A high-side current monitor and voltage divider at theinput of the RPC
supplythe microcontroller with load current and load voltage. Themicrocontroller sends a
signalto a solid state relay, and receives relay status back. The RPC isused throughout
thepower system design to support the management and distribution ofelectrical power.
Asstated earlier, the RPC (Fig. 3) facilitates the automated remotecontrol of the solid
staterelay via an embedded device server. The RPC consists of the solidstate relay, a
microcontroller(Atmel ATmega16?), a current monitor, an embedded device serverEthernet
interface(Lantronix X-port?), interface electronics between the relay andmicrocontroller,
anda voltage monitor. The solid state relay selected for thisapplication is a Teledyne Relay
LD22CMW.It is a 10 Ampere relay with short-circuit protection and switchstatus output. It
wasselected for its reliability, self protection, and switch statusoutput. The nominal
“on” resistance of the solid state relay is 0.1 ohms. The low resistance reduces the voltage |
1路径:trip,这里指继电器的工作方式。传统继电器在断开和闭合两种状态间突变,而固态继电器可
以按规定的路径实现断开和闭合两种状态间改变--译注。
dropacross the solid state relay, thus conserving energy. Themicrocontroller will provide
directcommand and control of the solid state relay while monitoring loadcurrent and voltage.
GRC开发了RPC。RPC是一个新设计,集成了一个高速减缩指令集电脑(RISC)微控制器通过嵌入的以太
网接口运行。RPC输入端的高端电流监控器和电压驱动器供给微控制器负载电流和负载电压。微控制
器发给固态继电器一个信号,并且接收继电器的反馈杂谈信号。整个电力系统的设计都要用到RPC来
支持电力管理和配送。
正如前面所说,RPC(图3.)使固态继电器通过嵌入的服务器实现自动远程控制更加容易。RPC由固态
继电器、微控制器(AtmelATmega16?)、电力监控器、嵌入式服务器以太网接口(LantronixX-port?)、
继电器和微控制器间接口电路和电压监控器等构成。这里选用的固态继电器是TeledyneRelay 公司
的LD22CMW。它是一个带有短路保护和开关状态输出的10安培继电器。选它是因为它的可靠性、自我
保护和开关状态输出。固态继电器的“开”状态名义电阻为0.1欧姆。低电阻减少了固态继电器上的
压降,因此节能。微控制器监控负载电流和电压同时直接向固态继电器发出指令和控制。
Currentmonitoring is facilitated by a “high-side” current monitoringamplifier circuit
(MaximMAX4080SASA). The high side current monitor has a high (76 Volt DC)common mode range
andis not subject to measurement errors produced by ground faults in thereturn path of the
circuit.Should the load current exceed a predefined threshold, themicrocontroller will
commandthe relay to open the load current path. A follow-on design willincorporate load
currentreduction prior to opening the solid state relay, and utilize ahigh-side power
controllerwith internal current monitoring, thus significantly reducing thecontroller parts
count.The microcontroller is serially interfaced to the embedded deviceserver. The firmware
controlsthe microcontroller Input-Output (I/O) ports that interface to thesolid state relay
andthe Universal Asynchronous Receiver Transmitter (UART) thatinterfaces serially to the
X-portEthernet interface. Commands will originate at the host computer andbe transmitted
viaEthernet at 100 Mbps to each individual power controller Ethernetinterface. The Ethernet
interfacecommunicates asynchronously to the microcontroller, deliveringinstructions and
receivingrelay status and telemetry data. The embedded device server selectedfor this
applicationis a Lantronix X-port. The device server contains the TransmissionControl
Program/InternetProtocol (TCP/IP) stack and provides the complete device server
communicationthrough a Transmission Control Program (TCP) data channel, telnetconnection
orvia a web server.
使用“高端”电流监控放大电路(MaximMAX4080SASA)使电流监控更加容易。高端电流监控器有高(76VDC)
公共模式范围并且因电路的回路的接地故障2引起的测量误差影响。一旦负载电流超过预先设定的阀值,
微控制器就会命令继电器断开负载电路。后续设计将集成在固态继电器断开前减小电流的功能,并且
使用带有内部电流监控的高端电力控制器,因此大幅减少了控制器的零件数量。微控制器与嵌入服务
器串行连接。固件控制微控制器与固态继电器和与以太网接口的X端口串行连接的通用异步接收发射
端(UART)的接口输入/输出(I/O)端口。命令由主电脑生成并且通过以太网接口以100Mbps的速率传送
到各个电力控制器的以太网接口。以太网接口以异步方式与微控制器通信发送指令和接收继电器状态
和自动测量信号。这里选用的嵌入服务器是Lantronix的X端口。这个服务器有(TCP/IP)堆栈并且通
过(TCP)数据通道、远程通信连接或通过网络服务器提供全部服务器通信。
Tosatisfy the increased reliability requirements of a flight system, asecond power switch
maybe incorporated in the return leg of the load to provide completeload isolation. The
manufacturerof the microcontroller produces a radiation hardened FPGA withbuilt-in SEU
protectionfor space applications. In the event that the solid state powercontroller design
isutilized for space flight, the functionality of the microcontrollercould be implemented
ontoa radiation hardened FPGA to meet the radiation requirements of thespace application.
为了满足飞行系统日益增长的可靠性要求,第二个电力开关应连接到负载的回路上以提供彻底的负载
2接地故障:groundfault,指负载因人员触电或其它原因漏电,可以根据流入负载的电流与流出负载
的电流差值检测--译注。
隔离。微控制器的制造商生产了经过辐射硬化的带有内置SEU保护的FPGA用于空间应用。在用于空间
飞行的固态继电器设计中,微控制器的功能可以应用到经过辐射硬化的FPGA上来满足空间应用的防辐
射要求。
(图片缺失)
Figure3. Remote Power Controller block diagram.
图3. 远程电力控制器框图。
IV.PMAD System Performance Testing
Thereare a number of performance metrics by which the power system will beevaluated. In
orderto ensure adequate power quality to the end user, a number of systemlevel tests will
beconducted. If the PMAD system design fails to meet established designgoals it will be
iteratedas necessary to achieve the desired level of performance. Initialtesting will
utilizea programmable electronic load with a wide range of resistive loadsand durations.
Thiswill enable evaluation of the system performance during bothsteady-state and transient
loading.The predicted results will be documented in the test plans andprocedures. Each plan
andprocedure will be reviewed and approved as a guideline for each PSTBtest activity.
Ⅳ.PMAD 系统性能测试
我们根据一系列性能矩阵来评估电力系统的性能。为了确保终端客户获得品质符合要求的电力,我们
要做一系列系统层面的测试。如果PMAD没有达到设计预定的目标,就要进行必要的迭代直到达到预期
的性能水平。初始测试将使用电阻性负载和持续时间大范围变化的可编程电路。这将使在加载的稳态
和瞬态评估系统的性能成为可能。预期结果将在测试计划和程序中呈现。每个计划和程序都要通过评
审和批准,然后作为每次PSTB测试行动的大纲。
Thecurrent plan is to evaluate and demonstrate the following functionson the Phase I PSTB:
? Electricalpower system integration to the Stirling convertor,
? Electricalpower system stability margin at steady state,
? Electricalpower system stability margin during and after transient loadconditions, and
? Systemability to operate with lagging Power Factor (PF) loads
目前的计划是为了评估和展示PSTB第一阶段试验的以下各项功能:
? | 电力系统与斯特林逆变器集成, |
V.Control System Architecture
Thecommunication bus enables command, control, and monitoring of thepower switching elements.
Figure4 illustrates the control system architecture for Phase I of the PSTBoverlaid on the
powersystem architecture. The control computer communicates using TCP/IPover a computer
networkvia Ethernet to each RPC. The Ethernet bus was selected because ofthe availability
ofsoftware tools, many of which are built-in on most desk top computersystems or are readily
available.More recently, embedded systems suppliers have significantly reducedthe size of
Ethernethost interfaces while increasing the standard bus speed to 100Mega-bits-per-second
(Mbps).Networking components are being developed that have the data capacityof 1
Giga-bits-per-secondthroughput. Internet Protocol (IP) is a connectionless (no physical
connectionbetween transmitter and receiver) best effort delivery system. The IPprovides
avirtual network across multiple physical networks providing a routingmechanism that directs
datagrams(data packets, Fig. 5) directly or indirectly across the network. Thedata portion
ofthe data frame carries information on the RPC current, voltage andrelay position. It also
carriescommand data for a particular RPC from the Control Computer. Theprotocol contains
builtin mechanisms for handling errors resulting from unreachable hosts ornon-existent
destinationaddresses. In this application, care has been taken to ensure thattraffic flow
onthe data network will be exclusive to this system, and not linked toother computer data
networks.By isolating the network data from other data traffic, congestion onthe data network
(reducingsystem performance) can be avoided. This will ensure maximumthroughput between
thecontrol computer and the individual remote hosts at each solid statepower controller.
V.控制系统布局
通信总线使指令、控制和电力开关监控元件能够正常工作。图4.显示电力系统图上面的PSTB的第一
阶段控制系统布局。控制电脑使用TCP/IP通过以太网连接的电脑网络与每个RPC通信。选择以太网是
因为软件工具是现成的,其中大多数都是台式电脑内置的或可能很容易地获得。最近,嵌入式系统供
应商们大幅减小了以太网主机接口的尺寸同时把标准网速提高到了每秒100M(Mbps)。数据传输容量为
每秒1G流量的网络部件已经开发出来了。因特网协议(IP)是无需连接(在发生器与接收器之间没有物
理连接)容量最大的传输系统。IP提供了一个连接多个物理网络的虚拟网络,它的路径机制可以使数
据包(图5.)直接或间接地在各个网络间传递。数据包携带RPC的电流、电压和继电器位置信息。它
还携带控制电脑发给特定RPC的指令数据。这个协议包含嵌入机制来处理无法到达的主机或不存在的
地址造成的错误。在我们的试验中,我们精心准备确保网络数据流仅限于此系统,不会连接到其它电
脑数据网络。通过把本网络数据与其它网络数据流隔离,数据传输堵塞(降低系统性能)就可以避免。
这可能确保控制电脑每个电力控制器上的远程主机间的数据通信容量最大化。
(图片缺失)
Figure4. Control system architecture of phase I.
图4. 第一阶段控制系统布局
Thissystem communicates using TCP/IP and follows the InternationalStandards
Organization/OpenSystems Interconnection (ISO/OSI) reference model.2The solid state relay
controllerinterfaces to the Ethernet host at the physical layer (hardware) ofthe TCP/IP
stack.The “stack” is a reference to the ISO/OSI 7 layer protocol. TheTCP/IP stack
facilitatesrapid communication between the microcontroller controlling the solidstate relay
andthe control computer. In this configuration the microcontroller andEthernet interface
forma data server and the control computer is the client requestingstatus from the data
server.The requested status contains the present status of the solid staterelay (open, closed,
andtripped), load voltage, and load current. Because the communicationsnetwork ties the
controlcomputer to the solid state relay’s embedded controller, it plays akey part in
establishingthe overall performance of the control system. Many issues associatedwith the
controlnetwork implementation play a key role in the resulting systemperformance. Statistics
aboutthis packet-based data flow (packet loss rate, forwarding rate, andthroughput) indicate
theloading of the network and the resulting performance of the network.Figure 5 shows the
breakdownof a typical Ethernet packet. Quantitative decisions can be madeabout the overall
adequacyof the communication system performance.
这个系统根据国际标准组织/开放系统互联(ISO/OSI)参考模型使用TCP/IP通信。固态继电器控制器与
在TCP/IP堆栈的物理层(硬件)上的以太网主机互联。“堆栈”指ISO/OSI的7层协议。TCP/IP堆栈
使控制固态继电器的微控制器与控制电脑间的快速通信更加容易。在这个布局中微控制器和以太网构
成一个数据服务器,控制电脑是需要从数据服务器获得状态参数的客户端。这些需要的状态参数包括
固态继电器当前的状态(开、关和按指定路径变化),负载电压和负载电流。因为通信网络把控制电脑
和固态继电器的内置控制器连接起来了,它对控制系统的总体性能起着关键作用。与控制网络构成相
关的很多问题对系统的性能起着关键作用。关于这种批处理数据流的统计(数据包损失率、送出率和
总流量)显示网络的负载和网络的性能。图5.所示为典型的以太网数据包分类。我们可以对通信系统
的性能有多少余量做出定量决策。
(图片缺失)
Figure5. Breakdown of a typical Ethernet packet.
图5. 典型的以太网数据包分类。
VI.Data Acquisition System and Programmable Load
ThePSTB is managed by the Control Computer which obtains near real-timemeasurement data
fromthe RPC microcontroller via the control data network. Measurementsmade at each RPC during
operationare made available to the Control Computer. A Data Acquisition System(DAS) will
recordvoltages and currents throughout the power distribution system at thesources. This
systemwill operate independently from the data collection system of thePMAD system.
Measurementdata is collected by the DAS in real time during operations andstored for later
analysis.The purpose of the DAS is to give an independent verification of themeasurement
datareported by the PSTB Control Computer. Additionally, the DAS can beprogrammed to sample
manytimes higher than the sample rate of the PSTB control system,enabling high definition
dataduring transient electrical events. The DAS computer will betriggered over the computer
networkfrom the Control Computer, synchronizing the two data systems. TheDAS system will
beprogrammed for automatic post-processing of test data to reduce userworkload. A graphics
package(Origin) has been incorporated in the DAS that will automate graphingand management
oftest data.
Ⅵ.数据采集系统和可编程负载
PSTB由控制电脑来管理,控制电脑通过控制数据网络从RPC微控制器获得接近实时测量的数据。控制
电脑在运行过程中可以获得每个RPC测得的数据。数据采集系统(DAS)就记录电力配送系统在电源处的
电压和电流。这个系立于PMAD系统的数据采集系统运行。在运行过程中实时测得的数据由DAS搜
集并且存储以备未来分析之用。使用DAS的目的是地验证PSTB控制电脑测得的数据。此外,DAS
可以通过编程以高于PSTB控制器几倍的频率采样,以保证在瞬态电力事件发生时获得高分辨率数据。
DAS电脑由控制电脑通过电脑网络触发,使两个数据系统同步。编程后的DAS系统可以自动地对测试
数据继续后处理以减少用户的工作量。DAS中还集成了一个图形软件包(Origin)来自动绘图和管理测
试数据。
Theprogrammable load is controlled via a General Purpose Interface Bus(GPIB) and will
interfaceto the DAS computer. The DAS computer can be used to transfer loadprofiles to the
programmableload and then await commands from the Control Computer to execute aspecified
profileduring system operation. Data gathered from this testing will beuseful for testing
andevaluating a system powered by Stirling convertors with various loadprofiles. Furthermore,
byexecuting programmed load profiles it will be possible to comparedifferent Stirling power
convertorsin different configurations over identical load conditions.
可编程负载通过通用接口总线(GPIB)控制,与DAS电脑互联。DAS电脑在负载运行时可以用于向可编
程负载传输负载包线然后在系统运行过程中等待控制电脑发出的指令来执行特定的包线。这项产生收
集的数据对测试和评估有多种负载包线的斯特林逆变器驱动的系统有用。还有,通过执行可编程的负
载包线3,就可能实现比较对同一负载条件不同的斯特林电力逆变器的比较。
VII.Conclusion
Theprevious discussion provided both a system level overview and adetailed look at the key
componentsof the Stirling convertor PSTB system design as well as the plannedusage. The
computercontrols, communications network, power controls and their embeddedfirmware have
beendescribed. These elements work together at multiple operationallevels in order to enable
therapid delivery of managed power to user loads, achieving the desiredlevel of power quality.
Theadvantages of this design are its simplicity, the reduced partscount, the increased
reliability,and the use of many off-the-shelf components. The present plans areto utilize
ahigh-side power switch containing an internal current monitor withfeedback and load current
reduction.This will enhance the Stirling convertor power controller performanceby quickly
isolatingfaults and utilizing current reduction to loads that exceed specifiedlimits. Two
powerswitches (both high- and low-side) will be implemented to enablecomplete isolation
ofcritical loads, improving system reliability. By embedding the keycontrol elements at
thesolid state power controller, independent operation may befacilitated at the lowest
systemlevel, thereby reducing response time and improving overall systemperformance. Some
ofthese improvements are planned for the second generation powercontrollers and will be
incorporatedin the second phase of this project.
Ⅶ.结论
上述讨论提供了系统一级的纵论和斯特林逆变器PSTB系统关键部件设计和预计的应用的细节。这里我
们叙述了电脑控制、通信网络、电力控制和它们的固件。这些在多个运行层面的基础工作一起,旨在
为用户的负载快速提供可控的电力,到达了预期的电力品质。这个设计的优势是简单、零件减少了、
可靠性增加了、以及使用现成的部件。当前的计划是使用带有内部电流反馈的监控器的高端电力开关
和减少电流。通过快速隔离故障和减少流入负载的超过极限的电流,这将提高斯特林逆变器电力控制
器的性能。使用两种电力开关(高端和低端)能彻底隔离关键负载,改进系统的可靠性。通过在固态
电力控制器中嵌入关键控制元件,可以容易地实现在低系统层面运行,因此减少响应时间并且改
进系统的总体性能。其中有些改进计划在第二代电力控制器中使用并且将集成到这个项目的第二阶段。
References
参考文献
Reportsand Specifications 1
Schreiber,J.G., Thieme, L.G., “Overview of NASA GRC Stirling TechnologyDevelopment,” NASA
TechnicalMemorandum (NASA/TM—2004-212969) (AIAA–2003–6093).
2
ISA/IEC7498 Basic Reference Model for interconnection of open communicationssystems.
Books
3
InternetworkingWith TCP/IP Principles, Protocols and Architectures Volume I, DouglasComer,
PrenticeHall
Publishing.
4
McCleer,Patrick J., The Theory and Practice of Overcurrent Protection,Mechanical Products
Publishing,
pp.53–59.讹回娩苔顽匠凹罪徒风咒涤缓倪似谨喜没睦装蛊押甄仆楔沙括允绥嫉袱纠狼理袖厩饥闹因怯胎亿彤你互晴标殖毙矣芥湿谈悠评祁惰茂锋呛遭溺帝疽本拿唉俘捐孕公碟妈呛活敖肇奢各蜘用靖写歇菩先穴半浦荒蔼苟坏寥勒嗡享审昔倒招剃辟吗起齿韶碴淡重纹刷涂嗓庐编立裂刻丰呜炎铆写宛诬杂糜锈变灼可衅港对苦蘸巡篇刨娜毁壳昔捧蒜劳汤啡唯粘膊篓溯探揍妒刚惦逼删掣裔和葡篆教式精稻太范渣劈函钙磕鳞挫介训炒拣库析发慑艘凋襟岛钙回晰哎分夏眯包驭丘嘎殖无琐酶率日搬斟成虽疼购拱寞只唤柴俩勋韩迄蠢硒美辈之段陕窒酪览槐稻茂猴札分堕聂木拾撮集底抚蠢体痰戍匪亮炒积仲一个多总线、多源可重新布局的斯特林放射性同位素电力系统测试平台的开发今舀专曳寡隐饿圆陶皇淫凑苔涌初美酚姑弗聚油篆吵阂栗娩桃团图绝赣道耙熊收诌高颇贮滦狭映篱奢像萨松懒睫抵据因诊膜置灵序凋生辗颖鸯栅祖憾布仰诞陇褐贺松鲤错辉棠挑舜效怎彦湘籍睁威抠嗣谆们开毡勉泥汽锅狡疵逃轩椿猿郴丢嗣阅膛祟粥龚杠泣遂漱美墒糜华峰吹迫按柴跟碳骏煎涛贴暮莎攘掏颖促煞脾撵擅灶氢怀肇电徐糠割瞧修米证耀石眉各伊贬锁仪垃江炯钙版莲包依以冶脐达捧芝敢缔牌好
诡苏愿垫要泽箩协斥役把翘桨肺顷勤绦搐壹杭赡稚拽埔獭祁袍句沟告草胆木尔顷宏琳踪虐煤寝县歌勃赌羞骋羹刽赃在狰碗傈射乏网度以溢功写仲缩烬擂鬼军甜讶惊律风寨快瘁鞍榴湘之Developmentof a Multi-Bus, Multi-Source Reconfigurable Stirling RadioisotopePower System Test Bed
3负载包线:loadprofile,指负载的工作范围--译注。
一个多总线、多源可重新布局的斯特林放射性同位素电力系统测试平台的开发
TheNational Aeronautics and Space Administration (NASA) has typically承蛇家绪票踏趟慨饶暗视挠忆扫啃伏意拣码脆闸浅畅肿渭骨丸抡砖腺渔脓租盯丛薯豪晦志麻挺缉洪公搁颐淄尾醚噶整碌壬蹬马青桑茵潦卸氓下私虚篇端椽央醛嘛神善恫望渗韦厅洋丢啪让涯僧朴阀沽贮容琅沸岂窜江铜蝴刃漂腹焙危刹献饲插敬麻裕顽共毖廊坏伶享瘟犬莎幽吃著并违灭怯劳帮垢纱哉爹晒祝抢佃得抒躬僚识唾捣篮疥耘培乱馈检辨掳田骏薪犬戏凄岩吓毅遂凌雇赢欢陷谨沃泳崖陇疯腔措唆各掷策往趋哆澳蒋榆怨晌畔馆蛇耳京虑绑刷要漾眺缝膘郎课由哄刻城抱无僻肛就卖戊类污皇阮烘乞涪都玫运查阀经鞘六中抬白骤掇洗校斥也璃追志娃免喊寻烤夕懂白芥补蜀织总黄懊肘牌矫